FANDOM

Fai una domanda...

In matematica, e più precisamente in topologia, il nastro di Möbius, dal nome del matematico tedesco August Ferdinand Möbius, è un esempio di superficie non orientabile e di superficie rigata.

Le superfici ordinarie, intese come le superfici che nella vita quotidiana siamo abituati ad osservare, hanno sempre due "lati" (o meglio, facce), per cui è sempre possibile percorrere idealmente uno dei due lati senza mai raggiungere il secondo, salvo attraversando una possibile linea di demarcazione costituita da uno spigolo (chiamata "bordo"): si pensi ad esempio alla sfera, al toro, o al cilindro. Per queste superfici è possibile stabilire convenzionalmente un lato "superiore" o "inferiore", oppure "interno" o "esterno".

Nel caso del nastro di Möbius, invece, tale principio viene a mancare: esiste un solo lato e un solo bordo. Dopo aver percorso un giro, ci si trova dalla parte opposta. Solo dopo averne percorsi due ci ritroviamo sul lato iniziale. Quindi per esempio una formica potrebbe passare da una superficie a quella "dietro", senza attraversare il nastro e senza saltare il bordo, semplicemente camminando abbastanza lontano.

Un nastro di Möbius può essere facilmente realizzato partendo da una striscia rettangolare ed unendone i lati corti dopo aver impresso ad uno di essi mezzo giro di torsione, pari a 180°. A questo punto se si percorre il nastro con una matita, partendo da un punto casuale, si noterà che la traccia si snoda sull'intera superficie del nastro che è quindi unica.

Ad blocker interference detected!


Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.

Inoltre su FANDOM

Wiki casuale